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A three-dimensional linear stability analysis has been carried out to understand the
origin of vortices and related density patterns in bounded uniform-shear flow of
granular materials, using a kinetic-theory constitutive model. This flow is found to
be unstable to pure spanwise stationary perturbations (kz �=0, kx =0 and ∂/∂y(.) = 0,
where ki is the wavenumber for the ith direction) if the solid fraction is below some
critical value ν < ν3D . The growth rates of these spanwise instabilities are an order of
magnitude larger than those of the two-dimensional (kz = 0) streamwise-independent
(kx = 0) instabilities that occur if the solid fraction is above some critical value ν > ν2D

(>ν3D). The spanwise instabilities give birth to new three-dimensional travelling wave
instabilities at non-zero values of the streamwise wavenumber (kx �= 0) in dilute flows
(ν < ν3D). For moderate-to-large densities with kx �= 0, there are additional three-
dimensional instability modes in the form of both stationary and travelling waves,
whose origin is tied to the corresponding two-dimensional instabilities.

While the two-dimensional streamwise-independent modes lead to the formation of
stationary streamwise vortices for moderately dense flows (ν > ν2D), the pure spanwise
modes are responsible for the origin of such vortices in the dilute limit (ν < ν3D). For
more general kinds of perturbations (kx �=0 and kz �= 0), ‘modulated’ streamwise
vortices are born which could be either stationary or travelling depending on control
parameters. The rolling motion of vortices will lead to a major redistribution of the
streamwise velocity and hence such vortices can act as potential progenitors for the
mixing of particles. The effect of non-zero wall slip has been investigated, and it is
shown that some dilute-flow instabilities can disappear with the inclusion of the wall
slip. Even though the streamwise granular vortices have similarities to the well-known
stationary Taylor–Couette vortices (which are ‘hydrodynamic’ in origin), their origin
is, however, tied to ‘constitutive’ instabilities, and hence they belong to a different
class.

1. Introduction
Rapid granular flows exhibit a rich phenomenology of particle clustering

(Goldhirsch & Zanetti 1993; Luding & Herrmann 1999), segregation (Ottino &
Khakhar 2000) and pattern formation (Umbanhower, Melo & Swinney 1996;
Goldhirsch 2003). Some recent experiments on chute flows (the flow down an inclined
plane) uncovered many interesting patterns in the form of roll waves, Kelvin–
Helmholtz instability, fingering instability and streamwise vortices (Pouliquen, Delour
& Savage 1997; Forterre & Pouliquen 2002; Goldfarb, Glasser & Shinbrot 2002).
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Instability-induced patterns have been extensively studied in classical fluid mechanics
for more than a century starting with the seminal works of Faraday, Rayleigh and
Reynolds in the late nineteenth century. In this regard, the plane Couette flow has
served as a prototype for such transition studies in Newtonian fluids. Following
the classical approach of hydrodynamic stability, similar theoretical studies on the
plane Couette flow of granular materials emerged during the end of last century
(Mello, Diamond & Levine 1991; Savage 1992; Babić 1993; McNamara 1993;
Schmid & Kytömaa 1994; Wang, Jackson & Sundaresan 1996; Tan & Goldhirsch
1997; Alam & Nott 1997, 1998; Nott et al. 1999) to explain particle clustering as
an instability of the associated base flow. Most recently, Conway & Glasser (2004)
have conducted large-scale molecular dynamics simulations of granular Couette
flows to verify the emergence of various types of density patterns as predicted earlier
by the linear stability analyses of Alam & Nott (1998).

Most of the previous stability studies on unbounded shear focused on two-
dimensional flows (Savage 1992; Schmid & Kytömaa 1994; Wang et al. 1996; Tan &
Goldhirsch 1997; Alam & Nott 1997, 1998), even though it is known that Squire’s
theorem does not hold for a granular fluid. Mello et al. (1991) considered the stability
of a three-dimensional unbounded granular shear flow, allowing perturbations only
in the ‘mean’ vorticity direction, and found that the flow can be unstable to such
perturbations. Babić (1993) also studied the same problem by allowing a more
general kind of time-dependent disturbance (known as Kelvin modes). He computed
initial growth rates of instabilities and showed that the perturbations with large
wavelengths initially grow exponentially, which might be responsible for particle
clustering (provided that the time scales for instabilities are faster than that of the
base flow). Wang et al. (1996) also briefly investigated the stability of unbounded
shear flow to streamwise-independent (kx = 0) modes. They showed that the flow
is unstable to pure spanwise perturbations (kz �= 0, but kx =0 and ky = 0) below a
critical solid fraction. A review of all previous work on the unbounded shear flow
was provided in Goddard & Alam (1999), along with some analytical results on its
three-dimensional instability. It was shown that the unbounded shear flow remains
stable to three-dimensional time-dependent Kelvin modes in the asymptotic limit,
even though the flow could be unstable to pure spanwise perturbations for dilute
flows (ν < ν3D ∼ 0.1, where ν is solid fraction). For pure transverse perturbations
(ky �= 0, but kx = 0 and kz = 0), this flow remains unstable for ν > ν2D (∼ 0.15). It
was also shown that the most unstable mode in unbounded shear flow is of two-
dimensional nature for ν > ν2D , thereby statisfying the postulates of Squire’s theorem
for moderate-to-dense flows.

For the bounded Couette flow, however, all the stability analyses (Wang et al. 1996;
Alam & Nott 1998; Nott et al. 1999; Alam et al. 2005; Alam 2005) investigated
two-dimensional perturbations only. In contrast to its unbounded counterpart, these
works clearly showed that there are additional two-dimensional instability modes,
in the form of stationary and travelling waves, when the walls are imposed, even
for the uniform shear flow. For a discussion on the relation between instabilities in
unbounded and bounded shear flows, the reader is referred to Alam & Nott (1998).

Since Squire’s theorem does not hold for granular flows, it is of interest to investigate
the possibility of new three-dimensional instabilities in bounded Couette flow. Another
important issue is the possible emergence of streamwise vortices and their modulated
cousins in this flow. It is interesting to note that the streamwise vortices and their
related streak patterns have recently been observed in experiments on granular chute
flow and have also been predicted by the linear stability analysis of the associated
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kinetic-theory continumm model (Forterre & Pouliquen 2002). Such vortical patterns
have also been predicted to occur in Stokesian suspensions of colloidal particles
(Carpen & Brady 2002), and observed in recent molecular dynamics simulations of
dilute granular Couette flows (Conway & Glasser 2004).

From an altogether different viewpoint, we note that the streamwise vortices play
an important role in transition to turbulence in shear flows of Newtonian fluids
(Hamilton & Abernathy 1994; Schmid & Henningson 2001; Waleffe 2003). The
understanding of the origin of such vortices in granular fluids could, thus, help in
exploring the possibility of similar routes to turbulence in sheared granular flows.
In this paper, we will try to answer whether the predicted streamwise vortices are
likely to lead to turbulence or not. Owing to the lack of any existing systematic
(and comprehensive) work on this, first we need to focus on uncovering different
instabilities and related pattern formation mechanisms in granular shear flows.

This paper is organized as follows. In § 2 we outline the continuum model and
formulate the related three-dimensional linear stability problem. In § 3 we present the
stability results on bounded uniform shear flow, focusing on the formation of vortices,
related density patterns and their characteristics in this flow. We have uncovered the
analogues of the stationary vortices, along with asymmetric vortical patterns and
other patterns. In § 4.1 we discuss the possible effects of slip boundary conditions on
the predicted instabilities. In § 4.2 we discuss the origin of the streamwise-independent
instabilities, and classify them according to constitutive/hydrodynamic instability. The
present work is based on the Newtonian constitutive model of Lun et al. (1984); the
implications of using a different constitutive model (e.g. Sela & Goldhirshch 1998;
Garzo & Dufty 1999) are briefly discussed in § 4.3. The conclusions are provided in
§ 5, along with suggestions for future work.

2. Model
2.1. Constitutive model and non-dimensionalization

We consider a continuum-level description of granular materials, consisting of
monodisperse particles of diameter d̃ and material density ρ̃p , bounded by two plane

walls at ỹ = −H̃ /2 and ỹ = H̃ /2. The coefficient of restitution e (<1) characterizes
the inelastic nature of particle collisions. (In the following, the quantities with tildes
are dimensional and those without are non-dimensional.) The upper wall moves with
a velocity ũw/2 in the x̃-direction and the lower wall moves with the same velocity
in the opposite direction. In the Cartesian framework, the x̃, ỹ and z̃ coordinates
represent the streamwise, transverse (i.e. normal to the wall) and spanwise directions,
respectively, with the corresponding velocity components being denoted by ũ, ṽ and w̃,
respectively. The mass density �̃ = ρ̃pν, with ν being the volume fraction of particles,
and the velocity field ũ = (ũ, ṽ, w̃)T , are the standard hydrodynamic variables. In the
rapid-shear regime (Kadanoff 1999; Goldhirsch 2003), the fluctuation kinetic energy
(or the granular temperature)

T̃ = 1
3
〈(c̃i − ũ) · (c̃i − ũ)〉 = 1

3
〈C̃ i · C̃ i〉,

where c̃i is the instantaneous velocity of the ith particle and C̃ i is its peculiar velocity,
is also treated as a hydrodynamic variable. A separate balance equation for T̃ (cf.
the Reynolds stress equation in turbulence) is needed since the transport properties
depend on the granular temperature. The dimensional form of these balance equations
can be found elsewhere (Alam & Nott 1998).
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The constitutive model for the stress tensor Σ̃ and the heat flux q̃, with first-order
corrections in inelasticty (and which is valid up to ‘linear’ gradients in the mean
fields), reduces to the standard Newtonian model (Lun et al. 1984):

Σ̃ = (p̃ − ζ̃ ∇̃ · ũ)I − 2µ̃S̃, (2.1)

q̃ = −κ̃∇̃T̃ − κ̃h∇̃ν, (2.2)

where

S̃ = 1
2
(∇̃ũ + ∇̃ũT ) − 1

3
(∇̃ · ũ)I

is the deviatoric part of the rate of strain and I is the identity tensor. Here p̃ is the
pressure; µ̃ and ζ̃ are the shear and bulk viscosities, respectively, of the granular
fluid. For the constitutive model of heat flux, the proportionality constant for the
standard Fourier term, κ̃ , is the analogue of thermal conductivity. The additional
transport coefficient, κ̃h, that arises due to the gradients in particle volume fraction
(and this can be thought of as the analogue of Soret effects in molecular fluids) is
dubbed higher-order thermal conductivity since it is non-zero for a system of inelastic
particles and vanishes identically for a perfectly elastic system. A simple functional
form for the radial distribution function χ(ν) is used in the present work,

χ(ν) =
1

1 − (ν/νmax)1/3
, (2.3)

that diverges in the random close packing limit (ν → νmax ≡ 0.65). The qualitative
nature of our results remains unaltered even if we use the Carnahan–Starling
expression for χ(ν).

We use the wall-to-wall gap H̃ as the length scale, the velocity difference between
the walls ũw as the velocity scale and the inverse of the overall shear rate H̃ /ũw ≡ γ̃ −1

as the time scale. With this scaling, the top wall of the Couette cell moves with a
velocity 1/2 and the bottom wall with −1/2. The dimensionless governing equations
and boundary conditions (Johnson & Jackson 1987) are written down in Appendix
A. For the most of the results presented below, the usual no-slip and zero-heat-flux
boundary conditions will be used, and the effects of wall slip on the stability results
are considered in § 4.1.

2.2. Base flow and linear stability equations

The base flow is steady (∂/∂t =0) and fully developed (∂/∂x = 0). It can be verified
that the continuity equation is identically satisfied, and the momentum and energy
balance equations reduce to

d

dy

(
µ

du

dy

)
= 0,

dp

dy
= 0,

H −2 d

dy

(
κ

dT

dy
+ κh

dν

dy

)
+ µ

(
du

dy

)2

− D = 0,




(2.4)

where H = H̃ /d̃ is the Couette gap (in terms of particle diameter). The boundary
conditions of no slip (us = 0) and zero heat flux (n · q = 0) admit an analytical
solution to (2.4):

ν(y) = const. = νav, u(y) = y, T (y) =
f2(ν, e)

f5(ν, e)
, (2.5)

for which the solid fraction and granular temperature are constants and the streamwise
velocity varies linearly with y, i.e. the shear rate is uniform. (The dimensionless
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functions f1–f5 can be found in Alam & Nott (1998).) We will analyse the stability
of this base flow.

To formulate the linear stability problem, the base flow [ν(y), u(y), 0, 0, T (y)] is
perturbed by infinitesimal disturbances:

ν(x, y, z, t) = ν(y) + ν ′(x, y, z, t),
u(x, y, z, t) = u(y) + u′(x, y, z, t),
v(x, y, z, t) = v′(x, y, z, t),
w(x, y, z, t) = w′(x, y, z, t),
T (x, y, z, t) = T (y) + T ′(x, y, z, t),




(2.6)

where the primed quantities, which are much smaller in magnitude, denote three-
dimensional perturbations. The time evolution of infinitesimal perturbations is studied
by linearizing the equations of motion and the boundary conditions around the
solution of (2.4). In operator form, the linear stability equations can be written
compactly as

∂X

∂t
= LX, with B±X = 0 at y = ±1/2, (2.7)

where

L ≡ L(∂j/∂xj , ∂j/∂yj , ∂j/∂zj , · · ·),
B± ≡ B±(∂j/∂xj , ∂j/∂yj , ∂j/∂zj , · · ·),

}
(2.8)

j is the order of the respective derivatives, and X =(ν ′, u′, v′, w′, T ′) the vector of
perturbation variables. The elements of the linear stability operator L and the
boundary operators B± are omitted for the sake of brevity.

It is straightforward to verify that the linear stability equations and the boundary
conditions are invariant under translations in both x and z. This allows us to employ
the standard Fourier method to decompose the perturbation variables into normal
modes:

[ν ′, u′, v′, w′, T ′](x, y, z, t) = [ν̂, û, v̂, ŵ, T̂ ](y) ei(kxx+kzz)+ωt , (2.9)

where the quantities with hats are complex amplitude functions of y; kx and kz are the
wavenumbers for the streamwise (x) and spanwise (z) directions, respectively. Here
ω =ωr + iωi is the complex frequency: ωr determines the rate of growth/decay of
perturbations and ωi is the perturbation frequency. The stablity/instability of the flow
is determined by the sign of ωr : for ωr < 0 the perturbations decay with time, signalling
stability, and for ωr > 0 the perturbations grow with time, signalling instability; the
flow is said to be neutrally stable for ωr = 0. The nature of the instability is determined
by the value of ωi: while ωi = 0 corresponds to a stationary wave, ωi �=0 corresponds
to a travelling wave.

Substitution of the normal modes (2.9) into the stability equations (2.7) yields a
differential eigenvalue problem:

ωX̂ = LX̂, with B±
X̂ = 0 at y = ±1/2, (2.10)

where

L ≡ L((ikx)
j , dj /dyj , (ikz)

j , · · ·),
B ≡ B((ikx)

j , dj /dyj , (ikz)
j , · · ·),

X̂ ≡ (ν̂, û, v̂, ŵ, T̂ ).


 (2.11)
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Note that the linearized stability equations (2.10) remain invariant under the
transformation

(x, y, z) → (−x, −y, −z), ω → ω, [ν̂, û, v̂, ŵ, T̂ ] → [ν̂, −û, −v̂, −ŵ, T̂ ]. (2.12)

This implies that there are conjugate pairs of modes with the same growth rate
but having positive and negative phase velocities, which is a consequence of the
centre-symmetry,

[ν, u, T ](y) = [ν, −u, T ](−y),

of the underlying base flow. In other words, the forward and backward propagating
modes with the same growth rate coexist with each other.

2.3. Numerical method

To solve the eigenvalue problem (2.10), we have used a staggered-grid spectral
(Chebyshev) collocation scheme to discretize the ordinary differential operators
(Fornberg 1998; Alam & Nott 1998). The discretized stability equations, along with
boundary conditions, form a generalized matrix-eigenvalue problem:

AΦ = ωBΦ, (2.13)

where A and B are square matrices of order (5K+4), K is the degree of the Chebyshev
polynomial, Φ the discrete analogue of the eigenfunction and ω the eigenvalue. Note
that the matrix B is singular since the boundary conditions do not contain time-
derivatives. The standard row and column operations are performed to remove the
singularity of B, and the order of the matrices is thereby reduced to (5K − 4). The
QR-algorithm of the MATLAB software is then used to calculate the eigenvalues of
generalized eigenvalue problem (2.13).

Out of a total of (5K − 4) eigenvalues, the one with maximum growth rate for
given stability parameters kx and kz,

ωl
r = max ωr,

is referred to as the least stable eigenvalue. The supremum of all least-stable modes
over all kx and kz,

ωd
r = sup

kx ,kz

ωl
r ,

is the dominant eigenvalue. Since the parameter space is very large (five control
parameters: νav , H , e, kx and kz), we have resorted to a detailed study of this three-
dimensional stability problem at a few specific points in the (H , νav)-plane, as shown
by different symbols in figure 1. This figure shows four different types of instability
regions for two-dimensional perturbations (Alam & Nott 1998).

3. Results: three-dimensional stability of bounded uniform shear flow
Here we present results for the three-dimensional instability of the uniform shear

flow (2.5) for which the rigid (us = 0, i.e. u′ = v′ = w′ = 0) and the zero-heat-flux
(n · q = 0) boundary conditions hold. In the following, the pure transverse and pure
spanwise modes refer to perturbations that have variations only in the transverse
(y) and spanwise (z) directions, respectively. Most of the results are presented for a
restitution coefficient of e = 0.8 (except in figures 12 and 15), and we comment on the
robustness of our results in § 4.3.
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Figure 1. Stability diagram for granular shear flow subject to two-dimensional perturbations:
e =0.8 (adapted from Alam & Nott 1998). The symbols denote specific points to be discussed
below.

3.1. Streamwise-independent instability (kx = 0)

In this section, we focus on perturbations that do not vary along the streamwise
direction (i.e. kx = 0). For such streamwise-independent modes, the linear stability
equations admit analytical solutions with the eigenfunctions being given in terms of
exponentials in y:

[ν̂(y), û(y), v̂(y), ŵ(y), T̂ (y)] = [ν̂1, û1, v̂1, ŵ1, T̂1]e
ikn(y±1/2). (3.1)

Here [ν̂1, û1, v̂1, ŵ1, T̂1] are the normalized amplitudes of perturbations, and kn = nπ
with n (a positive integer) being the mode number. In order to find the origin
of streamwise vortices, we briefly recall the earlier results on the two-dimensional
perturbations in § 3.1.1.

3.1.1. Two-dimensional modes: transverse banding

For the two-dimensional (kz =0) transverse perturbations, it is known (Alam &
Nott 1998) that the locus of neutral stability reduces to

H (ν, e) = nπ

√
N1

N2

∼ (1 − e2)−1/2, (3.2)

where

N1(ν, e) =
1

f5

[
f4 − f4hf1

(
df1

dν

)−1]
, (3.3)

N2(ν, e) = f1

(
df1

dν

)−1[
1

f5

(
df5

dν

)
+

1

f2

(
df2

dν

)]
− 2. (3.4)

It is clear from (3.2) that the n= 1 mode is the first to become unstable as H increases
at a fixed νav , and the onset of this instability represents the neutral stability contour
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in the (H, νav)-plane as shown by the thin solid contour in figure 1. We observe that
the flow is stable when the Couette gap is small; as H exceeds a critical value Hc,
which is a function of νav and e, the flow becomes unstable. There is also a minimum
value of solid fraction (νav ∼ 0.156), which is a weak function of e, below which the
flow remains stable to two-dimensional perturbations (Alam & Nott 1998).

As discussed in previous works (Wang et al. 1996; Alam & Nott 1998), this
pure transverse instability will lead to the segregation of particles, in the form of
alternating bands of dilute and dense regions, along the transverse direction. Such
transverse banding of particles is reminiscent of the shear-band formation in many
complex fluids, and has been observed in molecular dynamics (MD) simulations of
granular Couette flow (Tan 1995; Alam et al. 2005).

3.1.2. Pure spanwise modes: spanwise banding

For pure spanwise modes, kz �= 0, but ∂/∂y(·) = 0 and ∂/∂x(·) = 0. It can be verified
that the dispersion relation can be factored into(

ω +
µk2

z

νH 2

)2[
ω3 +

(
2

3ν

(
DT − u2

yµT

)
+

(2µ + λ)k2
z

νH 2
+

2κk2
z

3νH 2

)
ω2

+

(
2κ(2µ + λ)k4

z

3ν2H 4
+

2

3ν2
(2µ + λ)

(
DT − u2

yµT

) k2
z

H 2
+

2ppT k2
z

ν2H 2
+

pνk
2
z

H 2

)
ω

+
2

3ν

(
(pνκ − pT κh)

k4
z

H 4
+

(
pν

(
DT − u2

yµT

)
− pT

(
Dν − u2

yµν

)) k2
z

H 2

)]
= 0. (3.5)

The two real real roots of (3.5), ω = −µk2
z /νH 2, are negative and hence stable. In

fact, these two decaying modes correspond to the streamwise and transverse velocity
fluctuations. This can be understood if we consider the linearized evolution equations
for the streamwise and transverse velocity components:

ν

[
∂u′

∂t
+ uyv

′
]

=
µ

H 2

∂2u′

∂z2
,

ν
∂v′

∂t
=

µ

H 2

∂2v′

∂z2
,


 (3.6)

which are decoupled from the other three equations for ν ′, w′ and T ′. It is
straightforward to verify that the transverse velocity v′ decays exponentially in time:

v′(t) = v0 exp (−t/τ ) with v0 ≡ v′(t = 0), (3.7)

and the time constant is given by τ = νH 2/k2
zµ. The equation for the streamwise

velocity u′ is forced by v′, through its coupling with the mean shear uy . The solution
for u′ is given by

u′(t) = (u0 − v0uyt) exp (−t/τ ) with u0 ≡ u′(t = 0). (3.8)

It is interesting to note that there could be a short-time growth for u′(t), but in the
asymptotic limit (t → ∞) it decays with the same time constant τ as that of its
transverse counterpart. The energy density for this mode (Eu ∼ u′2) would increase
quadratically with time at small times, and the degree of transient energy growth
would be large if the imposed shear rate were large. Clearly, the viscosity stabilizes
both the streamwise and transverse velocity perturbations.

The other three stability equations for ν ′, w′ and T ′ are coupled, leading to a
cubic dispersion relation (3.5). It can be verified that this dispersion relation has one
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Figure 2. Stability maps for uniform shear flow in the (H, kz)-plane for streamwise-indepen-
dent modes (kx = 0): (a) νav = 0.05 and (b) 0.2. The coefficient of restitution is e =0.8. The
outermost contour in each panel represents the contour of neutral stability.

real root and a complex-conjugate pair (Gayen & Alam 2005), and the instability is
stationary. Hence, the locus of neutral stability can be simplified to

k2
z = H 2 N3(ν, e)

N1(ν, e)
∼ (1 − e2), (3.9)

where

N3(ν, e) =

[
f1

(
df1

dν

)−1(
1

f5

(
df5

dν

)
− 1

f2

(
df2

dν

))
− 1

]
. (3.10)

While N1(ν, e) remains positive for all values of νav , N3(ν, e) can become negative
beyond a moderate value of νav (that refers to inadmissible solutions). The critical
solid fraction, ν3D , above which this instability vanishes can be found by solving

N3(ν, e) = 0.

This yields a value of ν3D ≈ 0.11 which does not vary much with the restitution
coefficient since N3(ν, e) is a weak function of e. It is clear from (3.9) that the range
of spanwise wavenumbers, kz, for which the flow is unstable, shrinks to zero in the
elastic limit (e → 1), i.e. the flow remains stable to pure spanwise perturbations for
the case of perfectly elastic particles.

The pure spanwise instability leads to the segregation of particles, in the form of
alternating bands of dense and dilute regions, along the mean-vorticity (spanwise)
direction. It is interesting to point out that such spanwise banding of particles
has recently been observed in large-scale MD simulations of granular Couette flow
(Conway & Glasser 2004; Hopkins, Jenkins & Louge 1993), and is known to occur
in many complex fluids (e.g. in miceller solutions; Fischer, Wheeler & Fuller 2002).

3.1.3. Onset of streamwise structures (kx = 0 and kz �= 0)

Let us now focus on the streamwise-independent (kx = 0) perturbations with non-
zero values of the spanwise wavenumber (kz �= 0); this corresponds to perturbations
that vary in both the transverve and spanwise directions.

Figure 2 shows two stability diagrams in the (H, kz)-plane for νav = 0.05 and 0.2;
the restitution coefficient is set to e =0.8. The contour of neutral stability is labelled
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Figure 3. Variations of the growth rates of the first few modes with the Couette gap H :
e = 0.8; kx =0.0; kz = 1. (a) νav = 0.05; (b) 0.2.

0, and the flow is unstable inside the neutral contour and stable outside. For dilute
flows (νav = 0.05, see panel a), the flow is unstable to a range of kz, and this range
of unstable kz increases with increasing Couette gap. The origin of this instability
can be traced back to the pure spanwise perturbations as discussed in the previous
section. From the growth-rate contours in panel (a), we observe that the growth rate is
negative at kz = 0 and increases with increasing kz, reaching a maximum at some value
of kz, and decreases thereafter. Increasing the mean solid fraction to νav = 0.1 (not
shown for brevity), the range of unstable kz decreases, and this instability vanishes
altogether for νav > ν3D ≈ 0.11. There is a window of solid fractions, ν3D < νav < ν2D ,
for which the flow remains stable to streamwise-independent perturbations (kx = 0).
Beyond νav = ν2D ≈ 0.16, the pure transverse instability, as discussed in § 3.1.1, takes
over and the flow remains unstable to a range of kz beyond a minimum Couette gap
as seen in figure 2(b). For a given Couette gap, the growth rate of this instability is
maximum at kz = 0 and decreases with increasing kz.

Figures 3(a) and 3(b) show the variations of the growth rate of the first few modes
with the Couette gap for two densities νav = 0.05 and 0.2, respectively – the spanwise
wavenumber is set to kz = 1, with other paramters as in figure 2. For dilute flows
(νav = 0.05, see panel a), the instability is due to the first mode, and all the higher-
order modes remain stable. The growth rate of this mode increases with increasing H ,
reaches a maximum at some value of H , and decreases monotonically thereafter. At
higher densities (νav = 0.2, see panel b), the mode n= 1 remains stable for all H . For
this parameter combination, the mode n=2 becomes unstable first at some critical
value of H and remains the most unstable mode for a range of H , and successive
higher-order modes (n= 3, 4, . . .) take over as the most unstable mode after the mode
n=2 crosses the growth-rate curve of the mode n= 3 and so on. Such mode crossings
(that represent degenerate eigenvalues) are responsible for resonance (Alam & Nott
1998) as well as the kinks observed on the growth rate curves in figure 2(b). Increasing
the value of kz to 3 makes the modes n= 1, 2, 3 and 4 stable for all Couette gaps,
and the remaining modes with n � 5 can be unstable.

Let us now look at the eigenfunctions of the unstable modes. In the following, we
have normalized the x- and z-coordinates by the streamwise wavelength (λx) and the
spanwise wavelength (λz), respectively – hence each figure should be stretched by a
factor of 2π/kx or 2π/kz in the streamwise or spanwise direction to ascertain the true



Streamwise structures and density patterns in granular Couette flow 11

0 0.2 0.4 0.6 0.8 1.0
–0.5

0

0.5

y

x/λx

(a)

(c)

(b)

0 0.2 0.4 0.6 0.8 1.0
–0.5

0

0.5

z/λz

y

z/λz

0 0.2 0.4 0.6 0.8 1.0
–0.5

0

0.5

Figure 4. (a) Distributions of fluctuating density superimposed with the corresponding
(u′, v′) velocity field in the (x, y)-plane (at z = 0) for streamwise-independent modes (kx = 0).
(b) Distributions of fluctuating density superimposed with the corresponding cross-flow (v′, w′)
velocity field in the (y, z)-plane. (c) Shaded contours of the streamwise velocity u′(y, z) in
the (y, z)-plane, along with contours of streamwise vorticity Ωx(y, z). Solid contours denote
positive vorticity and dotted contours negative. Parameter values are νav =0.2; H = 100;
e =0.8; kz = 1.0. On the grey scale, white denotes maximum (i.e. positive) and black minimum
(i.e. negative).

aspect ratio of the underlying pattern. Figure 4(a) shows the disturbance pattern of
solid fraction, overlayed with the corresponding fluctuating velocity-field (u′, v′), in
the (x, y)-plane for the most unstable mode in figure 3(b) at H = 100 (i.e. the n=4
mode). On the grey scale, black represents minimum density and white maximum;
the contours are drawn at equal intervals of solid fraction. There are two rows of
particle-rich regions (white regions, called clusters) in figure 4(a), one located around
middle of the upper-half-plane and the other around the middle of the lower-half-
plane. The corresponding density pattern in the (y, z)-plane, along with the vector
plot of the cross-flow velocity field (v′, w′), is shown in figure 4(b). Looking at these
velocity vectors, we find that the material accumulates in the denser vortex from the
nearby dilute vortices.
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The shaded contours of the streamwise velocity u′(y, z) are shown in the (y, z)-plane
in figure 4(c); as in the density plots, white represents positive (i.e. maximum) velocity
and black negative (i.e. minimum). The contours of the streamwise vorticity Ωx for
the fluctuating motion,

Ωx =
∂w′

∂y
− ∂v′

∂z
, (3.11)

are also superimposed. The solid contours denote positive Ωx and the dotted contours
negative Ωx . This figure shows four counter-rotating streamwise vortices along the
transverse direction and two per wavelength along the spanwise direction. Note that
this vortex pattern does not change along the x-direction since kx = 0. Clearly, the
vortex rolls will lead to the redistribution of streamwise velocity, enhancing the mixing
of particles.

We have noted in figure 3(b) that different modes take over as the most unstable
mode as the Couette gap is varied (see, for example, the location of three stars on the
growth-rate curves at three different Couette gaps). The overall disturbance patterns
for the density, streamwise velocity and streamwise vorticity remain similar, except
that the number of streamwise vortices increases with increasing H . For example,
there are two vortices along the transverse direction at a Couette gap of H = 50 and
seven at H = 200.

For dilute flows (νav = 0.05, refer to figure 3a), the unstable disturbance pattern
for solid fractions at H = 100, overlayed with the corresponding velocity field, is
shown in figure 5(a) in the cross-stream plane. The parameter values are as in figure
3(a) with kz =1. The corresponding shaded contours of the streamwise velocity
are shown in figure 5(b), along with the contours of positive (solid line) and
negative (dashed line) streamwise vorticity Ωx . We observe two counter-rotating
vortices along the transverse direction, and this number does not change on
increasing/decreasing the Couette gap. Note that the origin of these three-dimensional
streamwise vortices is tied to the pure spanwise instability as discussed in § 3.1.2.
Increasing the spanwise wavenumber to kz =10 (see figures 5c and 5d) changes the
structure of these vortices in that the vortical motion becomes more intense near
the walls; this could be responsible for the birth of two additional ‘weaker’ bands
of ‘excess’ streamwise velocity near the walls in figure 5(d). The overall structure
of these patterns remains similar even if we change the Couette gap to H = 50 or
200. The reason for the appearance of two vortices in the transverse direction in
figures 5(b) and 5(d) is that for three-dimensional spanwise perturbations, only the
mode n= 1 is unstable and the higher-order modes remain stable for all Couette
gaps.

It is interesting to note that similar streamwise rolls/vortices have recently been
observed in three-dimensional molecular dynamics simulations of granular Couette
flow (Conway & Glasser 2004). Their figure 11(e) shows three ‘modulated’ streamwise
rolls parallel to the spanwise direction, and this corresponds to one density band along
the transverse direction (located symmetrically around the mid-plane). Increasing the
value of kz by a factor of three (see their figure 11b), they found one streamwise roll in
the spanwise direction. This is expected since increasing kz is equivalent to decreasing
the spanwise dimension of the Couette cell and hence it can accommodate fewer
rolls. Note that the simulations of Conway & Glasser were restricted to dilute flows
(νav = 0.05), but with wall parameters that correspond to sink walls with non-zero wall
slip. In contrast, all our results are valid for adiabatic walls with zero slip. Despite
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Figure 5. (a, c) Distributions of fluctuating density superimposed with the corresponding
(v′, w′) velocity field in the (y, z)-plane for kx =0 at a low density νav = 0.05. (b, d) Distributions
of the streamwise velocity superimposed with the contours of Ωx . Solid contours denote
positive vorticity and dotted contours negative. The spanwise wavenumbers are (a, b) kz = 1,
(c, d) kz = 10; other parameters as in figure 4.

different boundary conditions, we find qualitative agreement of our prediction of
streamwise vortices with their observations.

The predicted streamwise vortices at low densities and the related density patterns
are reminiscent of the well-known stationary Taylor–Couette vortices (Cole 1965)
which have little variation along the azimuthal (i.e. streamwise, in plane Couette flow)
direction. However, as we shall show in § 4.2, the streamwise granular vortices belong
to a separate class since they are non-hydrodynamic in origin.

3.2. General disturbances: modulated streamwise structures and density patterns

In this section, we consider instabilities that could arise from truly three-dimensional
perturbations that vary in all three directions (i.e. kx �= 0, kz �= 0 and ∂/∂y(.) �= 0), with
a focus on uncovering ‘new’ three-dimensional instabilities and analysing their density
and velocity patterns.
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Figure 6. (a) Stability map in the (kx, kz)-plane for moderately dense flows at νav = 0.2,
H/d = 100 and e = 0.8. The inset shows the same at kx ∼ 0. (b, c) Variations of (b) growth rate
and (c) phase velocity of the least stable mode with kx for various values of kz (solid lines,
kz = 0; dashed, kz = 1.0; dash-dot, kz = 3.0).

First we focus on the crossed-symbol, ⊗, in figure 1 at νav = 0.2, e = 0.8 and H = 100.
For these parameter values, figure 6(a) shows the stability map in the (kx, kz)-plane;
the inset displays an expanded form of the stability map for very long streamwise
wavenumbers kx ∼ 0. (The flow is unstable inside the neutral contour and stable
outside.) Apart from the long-wave instabilities, there are two more unstable zones
for moderate values of kx . The variations of the growth rate, ωl

r , of the least stable
mode and its phase velocity, cph =ωi/kx , with kx are shown in figures 6(b) and 6(c),
respectively, for three different values of the spanwise wavenumber kz. It is clear
from the phase-velocity curves that the unstable zone in figure 6(a), located around
kx ∼ 0.5, is due to stationary waves and the one located around kx ∼ 0.9, is due
to travelling waves. Looking at the variations of ωl

r and cph for kz =0 in figures
6(b) and 6(c) (see also, figure 6 of Alam & Nott 1998), we conclude that both these
instabilities originate from the corresponding two-dimensional instabilities. The effect of
three-dimensionality (i.e. increasing kz) is to decrease the growth rates of both the
stationary and travelling instabilities. As in the two-dimensional case, the dominant
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instability at (H, νav) = (100, 0.2) is due to the stationary waves. This conclusion holds
at any other point in the (H, νav)-plane that is located inside the neutral contour,
denoted by the thick solid lines, in figure 1.

The (stationary) density-wave pattern along with the corresponding velocity vectors,
for the dominant instability for kz = 1 (see the dominant peak in figure 6b), is shown
in figure 7(a) in the (x, y)-plane at z = 0. For this instability, kx = 0.55 and hence
figure 7(a) should be stretched by a factor of 11.4 in the x-direction to ascertain the
true aspect of this pattern. The corresponding wave patterns in the (y, z)-plane at
three different streamwise locations x = 0, x = λx/2 and x = 3λx/4 are shown in figures
7(b), 7(c) and 7(d), respectively. For all panels, the white denotes a positive quantity,
and the black a negative. It is observed in figure 7(a) that there are four rows of
clusters in the y-direction, in contrast to the corresponding two-dimensional pattern
at kz = 0 (not shown here, but see figure 8a of Alam & Nott 1998). Essentially, the
cluster around the mid-plane for the two-dimensional case splits into two smaller
clusters when the spanwise perturbations are allowed. We observe intense vortical
motions around each cluster in figures 7(b), 7(c) and 7(d). The shaded contours
of the streamwise velocity, u′(y, z), at x = 0 are shown in figure 7(e), and those of
the streamwise vorticity, Ωx , in figure 7(f ). Note that the streamwise vortices are
modulated in shape (a consequence of the non-zero streamwise wavenumber), and
are aligned at some angle with the streamwise direction. There is a strong vortex
around the mid-plane and two relatively weaker vortices near the walls. The central
vortex appears to be responsible for the splitting of the cluster (located around the
mid-plane) as mentioned earlier. Comparing figures 7(e) and 7(f ), we find that the
streamwise vortices help to redistribute the streamwise velocity in the flow.

The travelling analogues of the stationary patterns as depicted in figures 7(a),
7(b), 7(e) and 7(f ) are shown in figures 8(a), 8(b), 8(c) and 8(d), respectively. (This
corresponds to the second peak on the growth-rate curve in figure 6b with kz = 1.0).
This is a backward travelling wave, and the related forward travelling pattern can be
ascertained via the standard Euclidean group E1 of transformation. The streamwise
wavenumber for this instability is kx ≈ 0.9 and the phase velocity is cph = −0.1.
Compared to its two-dimensional counterpart (see figure 8b of Alam & Nott), the
elongated cluster around the mid-plane splits into two clusters of unequal size, and
this splitting of clusters is due to the presence of the streamwise vortices below the
mid-plane. The overall structural features of these density patterns and the associated
vortical motions look similar to those of the dominant stationary instability in figure 7
since both have the same parental origin (Alam & Nott 1998).

Next we focus on the symbol ⊕ in figure 1 for which νav = 0.4, H =50 and e =0.8.
Recall that for these parameter values, the dominant instability for two-dimensional
perturbations is due to the pure transverse modes. The stability map in the (kx, kz)-
plane, for three-dimensional perturbations at ⊕, is shown in figure 9(a). We observe
that there are two instability lobes – one for small kz (∼ 0) and the other for moderate
values of kz. (Note that this stability map is similar to that for the long-wave modes
at νav = 0.2 and H = 100 as in the inset of figure 6a.) The variations of ωl

r and cph

with kz for three different values of kx are shown in figures 9(b) and 9(c), respectively.
Figure 10(c) suggests that these instabilities are travelling in nature. We observe in
figure 9(b) that the most unstable mode for kx = 0.01 occurs at kz ≈ 0.2 and hence
it is a three-dimensional instability; increasing the value of kx , however, shifts the
most unstable mode to kz = 0, i.e. a two-dimensional instability. Thus, there is a small
window of streamwise wavenumbers (kx ∼ 0) for which the most unstable instability
is due to a three-dimensional perturbation. We have checked that this observation
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Figure 7. (a) Distributions of fluctuating density superimposed with the corresponding (u, v)
velocity field in the (x, y)-plane at z = 0. (b–d) Same as in (a) but in the (y, z)-plane at
different streamwise locations: (b) x = 0, (c) x = λx/2 and (d) x = 3λx/4. Shaded contours of
(e) streamwise velocity u′(y, z) and (f ) the streamwise vorticity Ωx in the (y, z)-plane at x = 0.
The wavenumbers are kx = 0.55 and kz =1.0, with other parameters as in figure 6. On the grey
scale, white denotes maximum (i.e. positive) and black minimum (i.e. negative).
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Figure 8. (a) Forward travelling wave pattern for the fluctuating density field superimposed
with the corresponding velocity vectors in the (x, y)-plane at z = 0. (b) The same as in (a) but
in the (y, z)-plane at x = 0. (c) Shaded contours of the streamwise velocity in the (y, z)-plane
at x = 0. (d) The same as in (c) but for the streamwise vorticity. The streamwise wavenumber
is kx = 0.89, with other parameters as in figure 7.

holds at any other point in the (H, νav)-plane that is located between the neutral
stability contour for the pure transverse modes (denoted by the thin solid lines in
figure 1) and the neutral contour for the dominant stationary modes (denoted by the
thick solid lines in figure 1).

Focusing on the symbol  in figure 1 for which νav =0.05, H = 100 and e =0.8, we
note that the flow is stable to two-dimensional perturbations. The stability map in
the (kx, kz)-plane, for three-dimensional perturbations at , is shown in figure 10(a).
The variations of ωl

r and cph with kx for three different spanwise wavenumbers
are shown in figures 10(b) and 10(c), respectively. We observe in figure 10(a) that
there are two instability lobes – the slender lobe near kx ∼ 0 represents stationary
waves and the larger lobe at large kx represents travelling waves. This origin of the
stationary instabilities is traced back to the pure spanwise instability as discussed in
§ 3.1.2. Analysing the modal structure of the first few modes with kx (not shown for
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Figure 9. (a) Stability map in the (kx, kz)-plane at νav = 0.4, H = 50 and e = 0.8. (b, c)
Variations of (b) growth rate and (c) phase velocity of the least stable mode with kz for
various values of kx (solid lines, kx = 0.01, dashed, kx = 0.02; dash-dot, kx = 0.03).

brevity), we have found that these stationary instabilities at small kx give birth to
‘new’ travelling instabilities at large kx . The dominant instability at  still comes from
the pure spanwise modes, but we have uncovered new three-dimensional travelling
instabilities of comparable growth rates with kx = O(1).

The density distribution for a typical travelling instability pattern in the (x, y)-plane,
at  with kx = 1 and kz = 10, is shown in figure 11(a) at z = 0. This is a backward
travelling wave, with the phase velocity cph ≈ −0.42. The corresponding travelling
pattern in the (y, z)-plane at x = 0 is shown in figure 11(b). It is observed that the
clusters are concentrated near the bottom wall along with large-scale vortical motions.
There is hardly any fluctuating motion in the upper-half of the Couette cell. This is
in contrast to the travelling wave patterns at moderate densities in figure 8 where
we observed clustering and intense vortical motion over the whole Couette-cell. The
nonlinear saturation of the instabilities in figure 10 will lead to asymmetric travelling
density patterns, with the asymmetry being in the transverse direction.

Considering the stationary instabilities in figure 10 at very small values of kx

(∼ 0.01), we have found (not shown for brevity) that the density patterns and the
associated vortical motions remain similar to those in figure 5 (for kx = 0), with
the only difference being that the density bands are now inclined to the streamwise
direction.
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Figure 10. (a) Stability map in the (kx, kz)-plane for dilute flows at νav = 0.05, H = 100 and
e =0.8. (b, c) Variations of (b) growth rate and (c) phase velocity of the least stable mode with
kx for various values of kz (solid, kz = 1.0; dashed, kz = 10.0; dash-dot, kz = 15.0).
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Figure 11. (a) Distributions of fluctuating density superimposed with the corresponding (u, v)
velocity field in the (x, y)-plane at z = 0. (b) Distributions of fluctuating density superimposed
with the corresponding (v,w) velocity-field in the (z, y)-plane at x = 0. The wavenumbers are
kz = 10 and kx = 1.0, with other parameters as in figure 10.
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Figure 12. Stability maps in the (kx, kz)-plane for very dilute flows at νav = 0.01 and H = 50
(refer to the circled-R symbol in figure 1): (a) e = 0.99; (b) e = 0.8. (c, d) Variations of growth
rate with kx or kz: (c) kz = 0; (d) kx = 0 (dotted lines, e = 0.5; dashed, e = 0.8; dash-dot, e = 0.99;
solid, e = 0.999).

Finally, we focus on the ‘circled-R’-symbol in figure 1 for which νav = 0.01 and
H = 50. For this parameter combination, the stability maps in the (kx, kz)-plane are
shown in figures 12(a) and 12(b) for two restitution coefficients e =0.99 and 0.8,
respectively. We have checked that this instability corresponds to a stationary wave.
It is observed that the instability zone increases in size with increasing dissipation
levels. For the nearly elastic system (panel a) there is a range of kx for two-dimensional
perturbations (kz = 0) for which the flow is unstable; decreasing the restitution
coefficient to e = 0.8 (see panel b) makes the two-dimensional perturbations stable for
all kx . This is in contrast to other two-dimensional instabilities (as discussed above)
which become stronger with increasing dissipation levels. This interesting dichotomy
was noted by Alam & Nott (1998) as displayed in figure 12(c) where we have plotted
the variations of ωl

r with kx for kz = 0 for four different restitution coefficients. Clearly,
the growth rate of the two-dimensional dominant mode is maximum at some value
of e and this instability degenerates into a neutral mode in both the perfectly elastic
and dissipative limits. In fact, this is a three-dimensional instability that survives in
the two-dimensional limit. This can be verified from figure 12(d) which shows the
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Figure 13. (a) Distributions of fluctuating density superimposed with the corresponding
(u′, v′) velocity field in the (x, y)-plane at z = 0. (b) Distributions of fluctuating density
superimposed with the corresponding (v′, w′) velocity field in the (z, y)-plane at x = 0:
νav = 0.01, H =50, e = 0.8, kz = 1; kx = 0.1.

variations of ωl
r with kz for three-dimensional perturbations with kx = 0. We observe

that the range of unstable kz and the maximum growth rate decrease in the elastic
limit e → 1.

Figure 13(a) shows the density distribution, overlayed with the corresponding velo-
city field, in the (x, y)-plane at z = 0 for the stationary instability at (νav, H ) = (0.01, 50)
with kx = 0.1 and kz = 1.0. The corresponding pattern in the (y, z)-plane at x = 0 is
displayed in figure 13(b). (The cross-flow patterns at other streamwise locations look
similar.) We observe a distinct pattern of vertical banding, i.e. the flow will degenerate
into columner structures along the transverse direction. Note that the vortical motion
appears to be more intense in the (x, y)-plane that in the cross-flow plane.

4. Discussion
4.1. Effects of boundary conditions

Previous works on the stability of plane Couette flow to two-dimensional perturbations
have established (Alam & Nott 1998) that the qualitative nature of the stability
results does not change even if we impose wall-slip and non-zero heat-flux boundary
conditions as long as the base flow remains similar to that of the uniform shear flow.
Only the growth rates differ if the walls act as sources/sinks of the granular energy.
For example, the growth rates of the dominant stationary and travelling instabilities
(refer to figure 1) will increase/decrease if the walls are made energy sources/sinks,
respectively.

We have verified that the above conclusions on two-dimensional instabilities also
hold for their three-dimensional counterparts – the details of these results are omitted
for the sake of brevity. However, the three-dimensional instabilities in the dilute
regime (see figure 12) are affected by the wall slip in some significant way as we
demonstrate below.

4.1.1. Effects of wall slip

In order to isolate the effects of wall slip on the stability characteristics of
the uniform shear flow, we consider a uniform shear solution to (2.4) with



22 M. Alam

1 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

H

kx

(a) (b)

0

0.0001

0.001

1 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

H

–0.001

–0.01

–0.05

Figure 14. Effect of slip on the stability map in the (H, kx)-plane at (νav, e) = (0.01, 0.8):
(a) uniform-shear case; (b) uniform-shear case with slip.

non-zero slip:

ν(y) = constant,
u(y) = (1 − 2|us |)y,

T (y) =
f2

f5

(1 − 2|us |)2.


 (4.1)

Note that this solution arises when the production term balances the dissipation term
in (A 8), leading to an adiabatic boundary condition on temperature. Here the slip
velocity satisfies the relation

|us | =
1

(2 + φHf7)
. (4.2)

We refer to (4.1) as the uniform-shear case with slip which is valid for a set of wall-
parameter combinations that is fixed by the following relation:

φ
(
1 − e2

w

)
=

2f5

3f2f7
2
. (4.3)

Here ew( �= 1) is the restitution coefficient for particle–wall collisions, and φ is the
specularity coefficient. If we specify the mean solid fraction, νav , and the material
parameter, e, the right-hand side of (4.3) is known and hence ew can be found as a
function of φ. Thus, (4.1) provides an ideal base state to judge the effect of slip on
stability by comparing its results with the uniform-shear case.

Figures 14(a) and 14(b) show the contours of ωl
r in the (H, kx)-plane for the cases

of uniform shear (2.5) and uniform shear with slip (4.1), respectively. Parameter
values are set to νav = 0.01 and e = 0.8. Comparing these two figures, we find that the
presence of slip makes the flow stable for the whole range of H . For e =0.8, we have
verified that the dilute flow instabilities are absent at other values of νav , making the
flow (4.1) stable to these instabilities in the (H, νav)-plane. Thus, in a stability map
such as in figure 1, the unstable zone in the lower left-hand corner is absent altogether
for the uniform-shear case with slip.

To ascertain the effect of slip on slightly inelastic particles, we show the stability
map in figure 15(a) in the (H, kx)-plane for e =0.99, with the mean density as in figure
14. The solid lines denote the contours of ωl

r for the uniform-shear flow with slip
(4.1), while the dashed line denotes the neutral contour for the no-slip case (2.5). It is
observed that the effect of slip is simply to diminish the ranges of H and kx for which
the flow is unstable. It is interesting to note that the instabilities in the non-continuum
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Figure 15. Stability maps in the (H, kx)-plane at νav = 0.01 and e = 0.99. (a) The solid lines
denote the contours of ωl

r for the uniform-shear case with slip, while the dashed line denotes
the neutral contour for the uniform-shear case. (b) The dot-dash lines denote the contours of
ωl

r for source walls (e = 0.99 and ew = 1.0), while the solid line denotes the neutral contour for
the case of uniform-shear with slip.

limit (H → 0) now disappear when the slip is incorporated. Our computations show
that typical growth rates for (4.1) at any point inside the unstable zone in figure 15(a)
are lower by an order of magnitude in comparison with the no-slip base state.

Lastly, figure 15(b) shows the contours of ωl
r in the (H, kx)-plane for the case of

source walls (e = 0.99 and ew =1.0) at νav = 0.01, denoted by the dot-dash lines. The
neutral contour for the uniform-shear case with slip is also superimposed as a solid
line. Comparing the two neutral contours, we find that the range of unstable H and
kx increases when the walls act as sources of granular energy, and the associated
growth rates also increase marginally.

The above results indicate that the effect of slip is to diminish the dilute flow
instability in that the ranges of unstable H , kx and kz, and the instability growth
rate decrease with the inclusion of slip for slightly inelastic particles. At e = 0.8, these
instabilities are completely suppressed by the wall slip.

4.2. Classification of constitutive and hydrodynamic instabilities

It is well-known in continuum mechanics that the nonlinearities in constitutive laws
can lead to certain instabilities, commonly known as constitutive/material instability
(Hadamard 1903; Joseph & Saut 1986; see, for a review, Goddard & Alam 1999).
The non-monotonic stress–strain curve or the coil–stretch transition (de Gennes
1974) in polymer rheology are classic examples of such instabilities. At the onset
of constitutive instability, the underlying field equations undergo a change of type
(Joseph & Saut 1986) in the form of either a loss of hyperbolocity, or a loss of
ellipticity. These instabilities differ from their well-known hydrodynamic counterpart
in that the nonlinearities associated with inertial terms are primarily responsible for
the latter type of instability. Following Goddard & Alam (1999), we classify the
streamwise-independent instabilities of granular shear flow in terms of constitutive
instability.

The criterion for the onset of the pure transverse instability is N2(ν, e) > 0 (refer
to (3.2)), which can be translated into

d

dν

(√
f2f5

f1

)
> 0. (4.4)
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Figure 16. Vartiations of (a) the shear-to-pressure ratio, S = µ/p, and (b) the pressure, p,
with solid fraction for uniform-shear flow. The regions of (in)stability to pure transverse and
spanwise perturbations are demarcated by the dashed line in each panel.

The term within the brackets is the ratio between the shear stress and the pressure,
S = µ/p, whose variation with density is clearly non-monotoic as shown in figure 16(a).
And the flow is unstable beyond a minimum solid fraction at which Sν changes sign:

ν2D ≡ ν|Sν=0.

Thus, the origin of the transverse-banding instability is tied to the non-monotonicity
of the shear-to-normal stress ratio with density. This instability criterion (4.4) is
similar to the criterion for the ordering transition in a sheared dense molecular fluid
(Loose & Hess 1989) as discussed in Appendix B.

Similarly, the criterion for the onset of the pure spanwise instability (refer to (3.9))
can be rearranged to yield

d

dν

(
f1f2

f5

)
< 0. (4.5)

Note that the term within the brackets is the pressure for the uniform-shear flow,
p = f1f2/f5, which also varies non-monotonically with density as shown in figure
16(b). Hence, the flow is unstable to pure spanwise perturbations below a critical
solid fraction where pν changes sign:

ν3D ≡ ν|pν=0.

Thus, the origin of the spanwise-banding instability in uniform shear flow is tied to
the non-monotonicity of pressure with density.

This brings us to an important issue: do the streamwise granular structures belong
to the same class as that of the well-known Taylor–Couette vortices of Newtonian
fluids? The answer is negative since the Taylor–Couette vortices are hydrodynamic
in origin and the granular vortices are constitutive in origin. Thus, despite having
certain structural similarities, the streamwise granular vortices that we have predicted
are distinctly different from their Newtonian counterparts in Taylor–Couette flows.

4.2.1. Spanwise banding and the loss of hyperbolicity

Here I show that the pure spanwise instability of granular shear flow can be
predicted by considering the stability of a reduced model of an isothermal sheared
granular fluid, which also suggests a change of type of an underlying wave equation
at the instability onset.
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Let us assume that the role of granular energy equation is only to set the temperature
of the base state, and that the predicted instabilities are independent of this equation.
Thus, the granular fluid is isothermal with the granular temperature: T (ν, e) = f2/f5.
Since the granular energy equation is redundant for this ‘reduced’ model, we have to
deal only with the continuity and momentum equations with the following ‘effective’
transport coefficients:

µ ≡ µ(ν, e) = f2
3/2/f5

1/2,

p ≡ p(ν, e) = f1f2/f5,

λ ≡ λ(ν, e) =
(
f3 − 2

3
f2

)
(f2/f5)

1/2.


 (4.6)

For this model with pure spanwise perturbations, the streamwise and transverse
shear modes decay in the asymptotic limit (as in the full model, see equation (3.5)).
The spanwise shear mode can be shown to satisfy the following partial differential
equation:

∂2w′

∂t2
= pνH

−2 ∂2w′

∂z2
+

(
2µ + λ

νH 2

)
∂3w′

∂z2∂t
. (4.7)

Using the standard normal-mode decomposition (w′(z, t) ∼ eωteikzz), the dispersion
relation reduces to

ω2 +

(
2µ + λ

νH 2

)
k2

zω + pνH
−2k2

z = 0. (4.8)

The two roots of this equation are given by

ω1,2 =
1

2

(
2µ + λ

νH 2

)
k2

z


−1 ±

√
1 − pν

(
2νH

(2µ + λ)kz

)2


 . (4.9)

It is clear that the negativity of pν leads to a stationary instability, with pν =0
indicating the onset of instability. The growth rate of this instability increases with
increasing kz and becomes unbounded as kz → ∞. Hence this is a short-wave instability
of Hadamard type (Hadamard 1903). When we include the granular-energy equation,
these short waves are damped, beyond a finite cutoff value of kz, by the conduction
term (see the expression for N1 in equation (3.2)). It can be verified that the evolution
equation for density perturbations reduces to the following equation (neglecting the
source terms due to viscosity):

∂2ν ′

∂t2
= D

∂2ν ′

∂z2
, with D = pν. (4.10)

This is the well-known wave equation, and is of hyperbolic type when D is positive
for which the flow remains stable. For instability to occur we must have a negative D,
rendering the above equation of elliptic type. Hence, the onset of the pure spanwise
instability is tied to the loss of hyperbolicity of the above wave equation.

It is important to note that there is no change in type of the field equations when
we consider the full set of equations. Only for the ‘reduced-model’ (with isothermal
approximation) have we derived the wave equation for density perturbation for
the pure spanwise modes which loses hyperbolicity at the onset of instability. As
mentioned before, this instability survives only at long wavelengths (k ∼ 0) since the
short waves are regularized by the conduction term in the granular-energy equation.
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4.3. Choice of constitutive model and the effects of inelasticity

The present work is based on the Newtonian constitutive model of Lun et al.
(1984) since we wanted make a direct comparison with a previous work on stability
(Alam & Nott 1998). The Newtonian constitutive model can be obtained from the
Enskog–Boltzmann equation by employing the perturbative expansion procedure of
Chapman and Enskog, and then truncating the infinite series at the Navier–Stokes
order. By including the Burnett- and super Burnett-order terms, one can obtain a
non-Newtonian constitutive model (Sela & Goldhirsch 1998; Jin & Slemrod 2001;
Santos, Garzo & Dufty 2004).

The Newtonian constitutive model is strictly valid for nearly elastic systems (e → 1).
However, the qualitative nature of our results would not change even if we were to
use any other Newtonian model. For example, we have shown that the streamwise-
independent ‘constitutive’ instabilities are quite robust and depend only on the
variation of pressure and viscosity with density (see figure 16). We have checked
that the shape of these curves does not change whether we use the model of Lun
et al. (1984) or Jenkins & Richman (1985); only the critical solid fractions (ν2D and
ν3D) for the onset of such instabilities differ slightly. It is straightforward to verify
that the inclusion of an additional contribution to the collisional dissipation D, that is
proportoional to ∇ · u (Garzo & Dufty 1999), does not influence the above conclusion.
In this regard, we also need to mention that both ν2D and ν3D increase slightly if we
use the Carnahan and Starling form of the radial distribution function.

The choice of e =0.8 in most of the figures is based on an earlier work (Alam & Nott
1998). We have checked that all the instabilities survive for any value of e �= 1. As we
approach the elastic limit (e → 1), the growth rate of any instability (except the dilute
flow instabilities in figure 12) decreases and the critical Couette gap (H ) for the onset
of instability increases. Of course, for highly dissipative systems, one should use non-
Newtonian constitutive models that incorporate normal stress differences (Alam &
Luding 2003). It is possible that such higher-order corrections might introduce new
instablities (see, for example, Kumaran 2004). Our preliminary work based on a
relaxation-type non-Newtonian model suggests that there are new travelling wave
instabilities at moderate densities if the relaxation time is of order one or larger; the
details of these results will be published in the future.

5. Summary and conclusions
We have investigated the stability of the bounded uniform shear flow of granular

materials to three-dimensional perturbations, using a kinetic-theory-based Newtonian
constitutive model for the rheology of the granular medium. This flow is found to
be unstable to pure spanwise (kz �= 0, but kx =0 and ∂/∂y(.) = 0, where ki is the
wavenumber for the ith direction) stationary perturbations if the solid fraction is
below some critical value ν < ν3D (∼0.1), leading to the banding of particles along
the spanwise direction. However, beyond a moderate value of the solid fraction
ν > ν2D (∼0.15), the most unstable streamwise-independent (kx =0) mode is a two-
dimensional stationary perturbation, leading to the banding of particles along the
transverse direction (i.e. a pure transverse mode). The growth rates of the pure
spanwise instabilities are an order-of-magnitude larger than of the pure transverse
instabilities. Both these spanwise and transverse instabilities lead to structures having
no variation in the streamwise direction, and they are responsible for the generation
of the streamwise structures. Similar types of vortices have recently been observed in
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three-dimensional molecular dynamics simulations of dilute granular Couette flows
(Conway & Glasser 2004).

For non-zero values of the streamwise wavenumber (kx �=0), additional three-
dimensional instabilities in the form of both travelling and stationary waves appear
at moderate-to-large mean densities (ν > ν3D). The origin of these three-dimensional
instabilities is traced back to the corresponding two-dimensional instabilities. The
growth rates of both the travelling and stationary instabilities decrease with increasing
spanwise wavenumber, and hence the dominant instability still comes from two-
dimensional perturbations. Interestingly, the inclusion of spanwise perturbations
changes the density patterns in the shear plane in that a row of clusters for two-
dimensional perturbations splits into two rows of clusters for three-dimensional
perturbations. For very long streamwise modes (kx ∼ 0), we find the birth of
travelling vortices which are simply the modulated versions of the corresponding
pure streamwise vortices.

In the dilute regime (ν < ν3D), the dominant instability comes from the pure
spanwise (‘stationary’) modes but there are three-dimensional ‘travelling’ instabilities
of comparable growth rates with kx =O(1). The origin of these ‘new’ travelling
instabilities is tied to the corresponding pure spanwise instabilities. These travelling
waves are associated with large-scale vortical motions near the walls. The nonlinear
saturation of these instabilities will lead to ‘asymmetric’ travelling density patterns,
with the asymmetry being in the transverse direction.

The effects of boundary conditions on three-dimensional instabilities are similar
to those on their two-dimensional counterparts, as long as the base flow remains
similar to that of the uniform-shear flow. For some dilute-flow instabilities (that lead
to vertical columnar-type density patterns), we have found that they can disappear
with the inclusion of the wall slip.

We have classified the streamwise-independent instabilities (leading to transverse
and spanwise bandings) in terms of ‘constitutive’ instability (Hadamard 1903; de
Gennes 1974; Joseph & Saut 1986; Goddard & Alam 1999). While the non-
montonicity of the pressure with density signals the onset of the pure spanwise
instability, the non-montonicity of the shear-to-normal stress ratio with density signals
the onset of the pure transverse instability. Using a reduced model of an isothermal
granular fluid, we have shown that both these instabilities are short waves in nature,
and are regularized by the conduction term in the granular-energy equation. We have
further shown that the onset of pure spanwise instability can be tied to the loss
of hyperbolicity of an underlying wave equation. We conclude that the streamwise
granular vortices are distinctly different from the stationary Taylor–Couette vortices
of Newtonian fluids, since the former is a constitutive instability and the latter a
hydrodynamic instability.

As mentioned briefly in the introductory section, there are numerous works that
unveil the route to turbulence in Newtonian fluids, and the streamwise vortices play
an important role in such a transition scenario (Schmid & Henningson 2001). Since
turbulence is an inertial phenomenon, the pure streamwise vortices that originate
from constitutive instabilities would not lead to turbulence. However, we have also
uncovered modulated streamwise vortices that are hydrodynamic in origin, and
they might lead to turbulence-like activity in granular fluids. To establish a firm
connection of the present work to granular turbulence, we need to solve the nonlinear
hydrodynamic equations, starting with such streamwise vortices as initial conditions.
Another possibility is to choose appropriate initial conditions from the ‘non-modal’
transient stability analysis of granular flows which also yields streamwise vortices as
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the optimal perturbations (Gayen & Alam 2005). Some recent MD simulations have
probed the possibility of turbulence in freely cooling granular media via the vortex
route (Isobe 2003). Clearly, similar MD simulations on granular shear flow would
further test the proposed route to turbulence.

The effects of streamwise vortices on the plugged base states with wall-slip and
non-zero heat-flux boundary conditions remain unexplored. It would be interesting to
further investigate the stability of such plugged base states to three-dimensional
perturbations, complemented by MD simulations at moderate-to-large densities.
Lastly, it would be desirable to analyse the effects of non-Newtonian rheology (i.e.
the normal stress differences) on the predicted instabilities, which, however, requires
a Burnett-order constitutive model. Work in these directions is in progress.

I acknowledge financial support from JNCASR in the form of a start-up grant
(PC/EMU/MA/35).

Appendix A. Governing equations and boundary conditions
Using the wall-to-wall gap H̃ as the length scale, the velocity difference between the

walls ũw as the velocity scale and the inverse of the overall shear rate H̃ /ũw ≡ γ̃ −1

as the time scale, the dimensionless evolution equations for ν(x, y, z, t), u(x, y, z, t),
v(x, y, z, t), w(x, y, z, t) and T (x, y, z, t) can be written as

Dν

Dt
= −ν∇ · u, (A 1)

ν
Du

Dt
= − 1

H 2

∂p

∂x
+

1

H 2

∂

∂x

[
2µ

∂u

∂x
+ λ(∇ · u)

]

+
1

H 2

∂

∂y

[
µ

(
∂u

∂y
+

∂v

∂x

)]
+

1

H 2

∂

∂z

[
µ

(
∂u

∂z
+

∂w

∂x

)]
, (A 2)

ν
Dv

Dt
= − 1

H 2

∂p

∂y
+

1

H 2

∂

∂y

[
2µ
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]
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1
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∂y

)]
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1
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∂
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µ
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, (A 3)
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, (A 4)

3
2
ν
DT

Dt
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1

H 2
∇ · (κ∇T + κh∇ν) − p(∇ · u)
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+
λ

2µ
(∇ · u)2

]
− D, (A 5)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, D the collisional dissipation
rate per unit volume (in dimensionless form) and H = H̃ /d̃ the dimensionless wall
separation or the Couette gap. The dimensionless transport coefficients take the
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following form:

p(ν, T ) = f1(ν, e) T , µ(ν, T ) = f2(ν, e) T 1/2,

ζ (ν, T ) = f3(ν, e) T 1/2, λ(ν, T ) =
(
ζ − 2

3
µ

)
,

κ(ν, T ) = f4(ν, e) T 1/2, κh(ν, T ) = f4h(ν, e) T 3/2,

D(ν, T ) = f5(ν, e) T 3/2.


 (A 6)

Here f1 − f5 are the non-dimensional functions of ν and e (see table 1 of Alam &
Nott 1998).

We adopt the boundary conditions of Johnson & Jackson (1987). The boundary con-
ditions on velocity and granular temperature, in dimensionless form, can be written as

us

|us |
· Σ · n = H

us

|us |
· Sw, (A 7)

n · q = H 3 us · Sw − H Dw, (A 8)

respectively. Here Σ is the ‘fluid’ stress tensor, Sw is the tangential momentum flux at
the wall, q is the heat flux vector, Dw the dissipation rate (due to inelastic grain–wall
collisions) per unit volume, n the unit normal from the wall directed into the particle
assembly, and us = u − uw the wall slip, with u being the velocity of the granular
material in contact with the wall and uw the wall velocity. The expressions for Sw

and Dw are (Johnson & Jackson 1987)

Sw =
φ

√
3πνχT 1/2us

6νmax

and Dw =

√
3πνχT 3/2

(
1 − e2

w

)
4νmax

. (A 9)

The specularity coefficient (or the momentum accomodation coefficient), φ,
characterizes the overall roughness of the wall, and its value varies between zero
(for perfectly specular collisions with a smooth wall) and unity (for perfectly diffuse
collisions with a rough wall); ew is the coefficient of restitution for particle–wall
collisions.

Appendix B. Connection with the stability criterion of Loose & Hess
There is an interesting connection of our instability criterion (4.4) for transverse

banding with a similar ordering transition in dense molecular fluids (Loose & Hess
1989). The instability criterion for the ordering transition of Loose & Hess is given
by (

∂pyx

∂γ

) (
∂pyy

∂ρ

)
�

(
∂pyx

∂ρ

) (
∂pyy

∂γ

)
, (B 1)

where ρ is the density, γ the shear rate, pyx is the shear stress and pyy is the isotropic
pressure in the present context. We assume the following functional dependence for
the normal and shear stresses on density and shear rate,

pyy = pyy(ρ)fyy(γ ),
pyx = pyx(ρ)fyx(γ ),

}
(B 2)

where fyy(γ ) and fyx(γ ) represent nonlinear functions of shear rate. Therefore, the
instability criterion (B 1) can be rewritten as(

pyx

dfyx

dγ

) (
fyy

dpyy

dρ

)
�

(
fyx

dpyx

dρ

) (
pyy

dfyy

dγ

)
. (B 3)
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For a granular fluid, the dependences of stresses on the shear rate and granular
temperature are given by

fyy(γ ) ∼ T ,

fyx(γ ) ∼ γ
√

T .

}
(B 4)

From the energy-balance equation of steady uniform-shear flow, we have the following
expression for the granular temperature:

T = (.)
f2

f5

γ 2 ∼ γ 2. (B 5)

Hence, the shear-rate dependence of stresses for a granular fluid is given by

fyy(γ ) = γ 2,

fyx(γ ) = γ 2,

}
(B 6)

i.e. the stresses vary quadratically with the shear rate (representing the well-known
Bagnold-scaling) and the viscosity varies linearly with the shear rate. Thus, the
granular fluid is non-Newtonian which is, however, a consequence of the higher-order
balance equation for the granular temperature. With these scalings, the instability
criterion (B 1) of Loose & Hess reduces to

pyx

dpyy

dρ
� pyy

dpyx

dρ

⇒ d

dρ

[
pyx

pyy

]
� 0. (B 7)

This is nothing but our instability criterion (4.4) for the transverse banding in granular
shear flow.
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Schmid, P. J. & Kytömaa, H. K. 1994 Transient and asymptotic stability of granular shear flow.
J. Fluid Mech. 264, 255.

Sela, N. & Goldhirsch, I. 1998 Hydrodynamic equations for rapid shear flows of smooth, inelastic
spheres, to Burnett order. J. Fluid Mech. 361, 41.



32 M. Alam

Tan, M.-L. 1995 Microstructure and macrostructures in rapid granular flows. PhD thesis, Princeton
University, USA.

Tan, M.-L. & Goldhirsch, I. 1997 Intercluster interactions in rapid granular shear flows. Phys.
Fluids 9, 856.

Waleffe, F. 2003 Homotopy of exact structures in plane shear flows. Phys. Fluids 15, 1517.

Umbanhower, P., Melo, F. & Swinney, H. L. 1996 Oscillons in vibrated granular media. Nature
382, 793.

Wang, C., Jackson, R. & Sundaresan, S. 1996 Stability of bounded rapid shear flows of a granular
material. J. Fluid Mech. 308, 31.


